Загрузка...
Энциклопедия Технологий и Методик

оооооооооооооооооооооооо

Загрузка...
Энциклопедия Технологий и Методик
 
Технологии по работе с металлом
 
Гальванопластика

Хромирование

Хромирование относится к наиболее трудоемким процессам гальванотехники. Оно требует особой тщательности и соблюдения чистоты как при приготовлении электролита, так и самих веществ, входящих в его состав. Вода используется дистиллированная или (лишь в крайнем случае!) основательно прокипяченная.

 

НАЧНИТЕ С ВАННЫ

Занятия гальванотехникой начните с изготовления ванны. Прежде всего подберите кастрюлю на 10 л и трехлитровую стеклянную банку. Емкости меньшего размера лучше не применять — это может усложнить регулировку параметров процесса, да и при приведенных величинах объема ванны хватает лишь для хромирования 6—8 небольших гильз или цилиндрических деталей.

Склеив из 1—1,5 мм фанеры корпус, соберите ванну согласно приведенному рисунку и закройте все фанерным кольцом. Работа над ванной заканчивается вытачиванием крышки кастрюли и монтажом на ней ТЭНов и контактного градусника.

Теперь — электрооборудование. Для питания ванны можно использовать любой источник постоянного тока с подключенным на выходе электролитическим конденсатором 80 000 мкф X 25 В. Провода питания должны иметь сечение не меньше 2,5 мм2. Регулятором силы тока, заменяющим регулятор напряжения, может служить секционный реостат. Он включается последовательно с гальванической ванной и состоит из параллельных, включаемых однополюсными рубильниками секций. Каждая последующая имеет сопротивление вдвое больше предыдущей. Число таких секций 7—8.

На передней панели блока питания установите две розетки на 15 А, одну — нормальной полярности, другую — обратной. Это позволит быстро провести анодную обработку детали и перейти на хромирование простым переставлением вилки. Розетки с тремя выходами, чтобы не ошибиться в полярности (подключаются, конечно, только два гнезда).

Для поддержания постоянной температуры электролита ванна снабжается контактным градусником. Напрямую управлять работой ТЭНов он не может из-за больших токов, поэтому потребуется собрать несложное устройство, схема которого приведена на рисунках.

Электролитическая ванна:
1 — внутренний корпус (кастрюля объемом 10 л), 2 — корпус (фанера толщиной 1—1,5 мм), 3 — теплоизоляция (стеклоткань), 4 — теплоизолирующий слой (асбестовая крошка, песок, стекловата), 5 — трубчатый электронагреватель ТЭН, 6 — контактный градусник, 7 — трехлитровая стеклянная емкость (банка), 8 — крышка (дельта-древесина).

Схема управляющего устройства.

Детали терморегулятора: транзисторы МП13—МП16, МП39—МП42 (VT1); 213—217 (VT2) с любыми буквенными обозначениями; резисторы МЛТ-0,25, диод— Д226, Д202—Д205; реле — ТКЕ 52 ПОДГ или ОКН паспорт РФ4.530.810.

Наладка терморегулятора: если при закорачивании точек 1—2 реле не срабатывает, соединяют эмиттер и коллектор VT1. Включение реле указывает на неисправность или малый коэффициент усиления VT1. В противном случае неисправен транзистор VT2 или он имеет недостаточный коэффициент усиления.

Собрав и наладив устройство ванны, можно приступать к приготовлению электролита. Для этого необходимо:

— налить в банку чуть больше половины подготовленной дистиллированной воды, подогретой до 50°С,
— засыпать хромовый ангидрид и размешать,
— долить воду до расчетного объема,
— влить серную кислоту,
— проработать электролит 3—4 ч из расчета 6—8 А г/л.

Последняя операция нужна для накопления небольшого количества ионов Сr3 (2—4 г/л), присутствие которых благоприятно сказывается на процессе осаждения хрома.

 

СОСТАВЫ ЭЛЕКТРОЛИТОВ
Хромовый ангидрид — 250 г/л или 150 г/л
Серная кислота — 2,5 г/л или 1,5 г/л

 

НЕ ЗАБЫВАЙТЕ О РЕЖИМАХ ХРОМИРОВАНИЯ!

Процесс хромирования в сильной степени зависит от температуры электролита и плотности тока. Оба фактора влияют на внешний вид и свойства покрытия, а также на выход хрома по току. Необходимо помнить, что с повышением температуры выход по току снижается; с повышением плотности тока выход по току возрастает; при более низких температурах и постоянной плотности тока получаются серые покрытия, а при повышенных — молочные. Практическим путем найден оптимальный режим хромирования: плотность тока 50—60 А/дм2 при температуре электролита 52° — 55° ±1°С.

Чтобы быть уверенным в работоспособности электролита, в приготовленной ванне можно покрыть несколько деталей, подобных по форме и размерам рабочим образцам. Подобрав режим и узнав выход по току простым замером размеров до и после хромирования, можно приступать к покрытию гильз.

По предложенной методике накладывают хром на стальные, бронзовые и латунные детали. Подготовка их заключается в промывке поверхностей, подлежащих хромированию, бензином и затем мылом (с помощью зубной щетки) в горячей воде, зарядке в оправку и размещении в ванне. После погружения в электролит нужно подождать 3—5 с и затем включить рабочий ток. Задержка нужна для того, чтобы деталь прогрелась. Одновременно происходит активирование поверхности деталей из латуни и меди, так как эти металлы хорошо травятся в электролите. Однако больше 5 с ждать не следует — в составе этих металлов есть цинк, присутствие которого в электролите недопустимо.

 

ХРОМИРУЕМ АЛЮМИНИЕВЫЕ СПЛАВЫ

На процессах нанесения хрома на алюминиевые сплавы нужно остановиться особо. Выполнение таких покрытий всегда сопряжено с рядом трудностей. Прежде всего это необходимость предварительного нанесения промежуточного слоя.

Сплавы алюминия, содержащие большое количество кремния (до 30%, сплавы марок АК12, АЛ25, АЛ26, САС-1), можно хромировать следующим образом:

— промывка детали в бензине,
— промывка в горячей воде со стиральным порошком или мылом,
— обработка детали в растворе азотной и плавиковой кислот (отношение 5:1) в течение 15—20 с,
— промывка в холодной воде,
— установка детали на оправке и хромирование (загрузка в ванну под током!).

Другое дело, если необходимо покрыть хромом сплав АК4-1. Его удается отхромировать только с помощью промежуточного слоя. К таким методам относятся: цинкатная обработка; по подслою никеля; через соль никеля; через анодную обработку детали в растворе фосфорной кислоты.

Во всех случаях детали подготавливают следующим образом:

— шлифование (и притирка);
— очистка (удаление жировых отложений после шлифовки в бензине или трихлорэтилене, затем в щелочном растворе),
— промывка в проточной холодной и теплой (50—60 °С) воде,
— травление (для удаления частиц, оставшихся на поверхности после шлифовки и притирки, а также для улучшения подготовки поверхности детали к нанесению хрома).

Для травления используется раствор едкого натра (50 г/л), время обработки 10—30 с при температуре раствора 70—80°С.

Для травления сплавов алюминия, содержащих кремний и марганец, лучше использовать такой раствор, в весовых частях:

- азотная кислота (плотность 1,4) — 3,
- плавиковая кислота (50%) — 1.

Время обработки деталей 30—60 с при температуре раствора 25—28°С. После травления, если это гильза цилиндра, ее надо немедленно промыть в проточной воде и на 2—3 с опустить в раствор азотной кислоты (50%) с последующей промывкой водой.

 

ПРОМЕЖУТОЧНЫЕ ПОКРЫТИЯ
(Цинкование)

Алюминиевые изделия при комнатной температуре опускают на 2 мин в раствор (едкий натр 400 г/л, сернокислый цинк 120 г/л, соль Рошеля 5—10 г/л. Или: едкий натр 500 г/л, окись цинка 120—140 г/л) при постоянном его перемешивании. Покрытие достаточно равномерное и имеет серый (иногда голубой) цвет.

Если цинковое покрытие легло неравномерно, деталь опускают в стравливающий 50-процентный раствор азотной кислоты на 1—5 с и после промывки повторяют цинкование. Для магнийсодержащих сплавов алюминия двойное цинкование обязательно. Нанеся второй слой цинка, деталь промывают, заряжают в оправку и под током (без подачи напряжения цинк успевает частично раствориться в электролите, загрязняя его) устанавливают в ванне. Предварительно оправка с деталью погружается в стакан с водой, нагретой до температуры 60°С. Процесс хромирования обычный.

 

Никелирование (химическое)

Если цинк не ложится на алюминий (наиболее часто это происходит на сплаве АК4-1), можно попытаться нанести хром через никель.

Порядок работы таков:
— притирка поверхности,
— обезжиривание,
— травление 5—10 с в растворе азотной и плавиковой кислот, смешанных в соотношении 3:1,
— никелирование.

Последняя операция — в растворе следующего состава: сернокислый никель 30 г/л, гипофосфит натрия 10—12 г/л, уксуснокислый натрий 10—12 г/л, гликоколь — 30 г/л. Составляется он сначала без гипофосфита, который вводится перед никелированием (с гипофосфитом раствор долго не хранится). Температура раствора при никелировании 96—98°С. Можно использовать раствор и без гликоколя, тогда температура должна быть снижена до 90°С. За 30 мин на деталь осаждается слой никеля толщиной от 0,1 до 0,05 мм. Посуда для работ — только стеклянная или фарфоровая, так как никель осаждается на все металлы восьмой группы периодической таблицы. Хорошо поддаются никелированию латунь, бронза и другие медные сплавы.

После осаждения никеля проводится термообработка для улучшения сцепления с основным металлом (200—250°С, выдержка 1—1,5 ч). Затем деталь монтируется на оправке для хромирования и опускается на 15—40 с в раствор 15% серной кислоты, где обрабатывается обратным током из расчета 0,5—1,5 А/дм2. Происходит активирование никеля, удаляется окисная пленка, и покрытие приобретает серый цвет. Кислота должна применяться только химически чистая (в самом крайнем случае аккумуляторная). Иначе никель приобретает черный цвет, и хром на такую поверхность никогда не ляжет.

После этого оправку с деталью загружают в ванну хромирования. Вначале дают ток в два раза больший, затем в течение 10—12 мин его уменьшают до рабочего.

Дефекты химического никелирования:

— никелирование не происходит: деталь не прогрелась, следует подождать некоторое время,
— пятна на поверхности (характерно для АК4-1): плохая термообработка детали, нужно ее термообработать при 200—250°С в течение 1,5—2 ч.

Удаление никеля с алюминиевых сплавов можно производить в растворе азотной кислоты.

Иногда в процессе никелирования происходит саморазряд — выпадение порошкообразного никеля. В этом случае раствор выливают, а посуду обрабатывают раствором азотной кислоты для удаления с ее поверхности никеля, который будет мешать осаждению на детали.

Хотелось бы отметить, что никель-фосфор сам по себе обладает весьма интересными свойствами, не присущими хромовым покрытиям. Это равномерность слоя на поверхности деталей (после осаждения доводки не требуется); высокая твердость после термообработки (режим 400°С в течение часа дает твердость покрытия HV 850—950 и больше); низкий коэффициент трения по сравнению с хромом; очень незначительное расширение; высокий предел прочности при растяжении.

Никель-фосфор без дальнейшего нанесения хрома может использоваться не только как промежуточное покрытие на гильзах, но и как рабочее, снижающее трение и износ, для золотников и поршневых пальцев. После двух лет активной эксплуатации двигателя с деталями подобной отделки на них отсутствовала явная выработка, характерная для стальных каленых поверхностей.

 

Нанесение хрома через соль никеля

Весь процесс сводится к следующему:

— травление в растворе едкого натра (50 г/л, t=80°, 20 с),
— промывка в проточной воде,
— нанесение 1-го промежуточного слоя (хлористый никель, 1 мин),
— стравливание промежуточного слоя в растворе азотной кислоты (раствор кислоты 50%, 1 мин),
— нанесение 2-го промежуточного слоя (хлористый никель, 1 мин),
— промывка водой,
— травление (азотная кислота 50%, 15 с),
— промывка в проточной воде,
— загрузка в ванну хромирования под током.

 

Нанесение хрома через анодную обработку

Вместо промежуточных слоев можно выполнять анодную обработку в растворе 300—350 г/л фосфорной кислоты при температуре 26—30°С, напряжении на зажимах 5—10 В и плотности тока 1,3 а/дм2. Ванну следует охлаждать. Для сплавов, содержащих медь и кремний, применяют раствор 150—200 г/л фосфорной кислоты. Режим — 35°С, время обработки 5—15 мин.

После анодной обработки следует провести кратковременную катодную обработку в щелочной ванне, которая частично снимает оксидный слой. Как показали исследования, в процессе анодной обработки алюминиевых сплавов в фосфорной кислоте на деталях образуется шероховатая поверхность, которая способствует прочному сцеплению наносимого впоследствии покрытия.

 

ПРИСПОСОБЛЕНИЯ, ОПРАВКИ

Хромирование гильзы

Для выполнения работ с гильзой цилиндра изготавливается оправка. Ее устройство понятно из приведенного рисунка, остановимся лишь на отдельных деталях.

Анод — стальная шпилька; с одного ее конца на длине 50—60 мм наплавляется свинец с сурьмой (7—8%). Свинец протачивается по наружному диаметру до 6 мм (для гильз 15 мм). С другой стороны шпильки нарезается резьба для фиксации провода.

Катодом служит кольцо с внутренним диаметром, на 0,5 мм превышающим внутренний размер гильзы. В него вчеканивается отрезок изолированного провода. Медные и латунные проводники лучше не использовать — электролит растворяет их, и контакт может быть нарушен. Перед монтажом оправки в ванне полезно проверить надежность контактов тестером.

 

Хромирование стальных деталей
(коленвал, палец кривошипа, палец поршня, обоймы подшипников и т.д.)

Хромирование стальных деталей ведется по следующей технологии:

— удаление жировых пятен с помощью бензина,
— промывка в горячей воде с мылом,
— обработка детали обратным током в течение 2—3 мин,
— переключение в режим хромирования с током, в 2—2,5 раза большим расчетного, и постепенное снижение тока в течение 10—15 мин.

Расчетный ток определяется перемножением площади хромируемой поверхности на ток процесса. Для стали последняя величина — 50 А/дм2. При хромировании, например, посадочного места под коренной подшипник на коленвале двигателя КМД-2,5 расчетный ток будет равен 0,03 дм2 Х 50 А/дм2 = 1,5 А.

Для хромирования пальца кривошипа понадобится новая оправка. Как и при обработке коленвала, все открытые участки поверхности закрываются клеем «АГО». Анод вытачивается из стали с последующей заливкой свинцом и расточкой отверстия под палец. Применение стальной детали объясняется необходимостью обеспечить надежный контакт — в свинце резьбовые соединения ненадежные. Расчеты токов аналогичны. Работа проводится в оправке вала с помощью специальной насадки.

Практически ничем не отличается хромирование подшипников. Единственное — для предохранения внутренней части детали ее заполняют солидолом или другой консистентной смазкой, которая после нанесения покрытия вымывается бензином.

Концентрация хромового ангидрида в электролите контролируется с помощью ареометра. Концентрацию же серной кислоты удается определять лишь, к сожалению, косвенно, по качеству покрытия.

В процессе хромирования идет испарение электролита. В этих случаях доливают воду до нужного уровня. Делается это без установки деталей — возможно изменение температуры электролита.

После хромирования все изделия подвергают термообработке в течение 2—3 ч для удаления водорода, при температуре 150—170°С. Все работы ведутся под вытяжным приспособлением, в резиновых перчатках и в очках.

Оправка для хромирования гильзы цилиндра:
1 — крышка (винипласт), 2 — верхняя часть оправки (фторопласт), 3 — нижняя часть оправки (фторопласт), 4 — анод (сталь), 5 — катод, 6 — сквозное окно для прохода электролита, 7 — покрываемая гильза, 8 — насадка-изолятор.

Оправка для хромирования вала и поршневого пальца:
1 — анод, 2 — катод, 3 — коленвал, 4 — конусная оправка, 5 — поршневой палец.

Оправка для хромирования внешней обоймы шарикоподшипника:
1— корпус оправки подшипника, 2 — шарикоподшипник, 3 — фигурная гайка, 4 — анод (свинец), 5 — центральная часть оправки для хромирования, 6 — катод (сталь), 7 — крышка, 8 — сквозное окно для прохода электролита.

Оправка для хромирования пальца кривошипа:
1 — коленвал (он же катод), 2 — сквозное окно для прохода электролита, 3 — анод, 4 — винт крепления крышки, 5 — детали оправки (фторопласт).

 

ДЕФЕКТЫ ХРОМИРОВАНИЯ И ИХ ПРИЧИНЫ

1. Хром не оседает на изделие:
— плохой контакт у анода или катода,
— мало сечение проводников,
— на поверхности анода образовалась толстая пленка окислов (удаляется в растворе соляной кислоты),
— мала плотность тока,
— высока температура электролита,
— мало расстояние между электродами,
— избыток серной кислоты.

2. Покрытие отслаивается:
— плохое обезжиривание поверхности,
— нарушалась подача тока,
— колебание температуры или плотности тока.

3. На поверхности хрома - кратеры, отверстия:
— на поверхности детали задерживается водород - изменить подвеску так, чтобы газ свободно удалялся,
— на поверхности основного металла имеется графит,
— поверхность основного металла окислена, пориста.

4. На выступающих частях утолщенное покрытие:
— повышенная плотность тока.

5. Покрытие жесткое, отслаивается:
— мала плотность тока, повышена температура электролита,
— в процессе хромирования изменялась температура электролита,
— в процессе шлифования изделие перегрелось.

6. Хром не оседает вокруг отверстий детали:
— большое выделение водорода - закрыть отверстия пробками из эбонита,
— избыток серной кислоты.

7. На покрытии коричневые пятна:
— нехватка серной кислоты,
— избыток трехвалентного хрома (более 10 г/л) — выдержать ванну под током без деталей, увеличив поверхность анодов и уменьшив — катодов.

8. Мягкое «молочное» покрытие:
— высока температура электролита,
— мала плотность тока.

9. Покрытие матовое, неровное, трудно притирается:
— нехватка хромового ангидрида,
— велика плотность тока,
— нехватка серной кислоты,
— избыток трехвалентного хрома.

10. Покрытие пятнистое и матовое:
— в процессе хромирования прерывалась подача тока,
— изделие перед загрузкой было холодное.

11. В одних местах покрытие блестящее, в других матовое:
— велика плотность тока,
— низка температура электролита,
— неодинакова плотность тока на выступающих и углубленных частях детали.

Автор: Ю. Муссалитин
http://patlah.ru

© "Энциклопедия Технологий и Методик" Патлах В.В. 1993-2007 гг.

Loading...

 

оооооооооооооооооооооооо

Загрузка...